On Solvability of the Neumann Boundary Value Problem for Non-homogeneous Biharmonic Equation
نویسندگان
چکیده
منابع مشابه
On the Boundary Integral Equation Method for a Mixed Boundary Value Problem of the Biharmonic Equation
This paper is concerned with weak solution of a mixed boundary value problem for the biharmonic equation in the plane. Using Green’s formula, the problem is converted into a system of Fredholm integral equations for the unknown data on different part of the boundary. Existence and uniqueness of the solutions of the system of boundary integral equations are established in appropriate Sobolev spa...
متن کاملSolvability of Fractional Analogues of the Neumann Problem for a Nonhomogeneous Biharmonic Equation
In this article we study the solvability of some boundary value problems for inhomogenous biharmobic equations. As a boundary operator we consider the differentiation operator of fractional order in the Miller-Ross sense. This problem is a generalization of the well known Neumann problems.
متن کاملSolvability of discrete Neumann boundary value problems
In this article we gain solvability to a nonlinear, second-order difference equation with discrete Neumann boundary conditions. Our methods involve new inequalities on the right-hand side of the difference equation and Schaefer’s Theorem in the finite-dimensional space setting. © 2006 Elsevier Inc. All rights reserved.
متن کاملSolvability of Discrete Neumann Boundary Value Problems
In this article we gain solvability to a nonlinear, second-order difference equation with discrete Neumann boundary conditions. Our methods involve new inequalities on the right-hand side of the difference equation and Schaefer’s theorem in the finitedimensional space setting. Running Head: Discrete BVPs AMS Subject Code: 39A12, 34B15 Corresponding Author: C C Tisdell
متن کاملPositive Solution for Boundary Value Problem of Fractional Dierential Equation
In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: British Journal of Mathematics & Computer Science
سال: 2014
ISSN: 2231-0851
DOI: 10.9734/bjmcs/2014/6825